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Introduction

In Slmple terms: Ekin — Q(V,S’ource — VBeamline)

VSource

I
' Beam

Source Beamline

Vbeamline
(most often grounded)
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Unfortunately...Not so simple.

Strict beam requirements:

* Current

« Emittance

« Species

Extracting from a plasma (typically):

« What happens inside the source?

What happens at the boundary?

« What happens after initial acceleration?
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Outline

Start with a few approximations, look at general
principles.

Then we will look at this mostly from the Simulation side:

* Review the theory that we need to model the
processes at the plasma boundary.

 How do Computer Codes implement this?
« What codes are available?

* A quick IGUN example to demonstrate.

Many theory slides adapted from T. Kalvas — CERN Accelerator School.
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Thermal Emittance Estimate

€rms = \/ (x2)(z2) — (xza/)2  [mm-mrad]

(22) — [[[[] 2?f(x,y,2',y")dzdydx'dy’

[ITT fx,y, 2’y )dedyda'dy €T
With a (somewhat) realistic distribution like a Gaussian

Using

Extracted from a circular hole

—m(m’vz)2

I(:E,:L")I #\/TQ_QE2\/27$T€ okT

One can make an estimate for the normalized rms

emittance:
1 kT r
€rms,norm. — 2\/ m ¢

with T the ion temperature and r the aperture radius.
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Magnetic Emittance Growth

* In many ion sources a strong solenoidal field is
present at the extraction aperture. Thus the particles
receive an azimuthal thrust upon exiting the source:

__gBr
Vo = 2m0

« The emittance can be calculated outside of the
Influence of the magnet when the azimuthal motion
has been completely changed into radial motion:

vg __ qBrg
VU, U, 2muv .,
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Space Charge
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Space Charge Compensation
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Space Charge and Space Charge Compensation will be discussed Thursday
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Two Limits to Maximum Current:

From Poisson’s Equation we get the Child-Langmuir Law:

1/2 v,3/2
[=1.67-10"3A (i) Yo

mc? d?

From plasma physics we get available lons:
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Child-Langmuir vs Plasma Limit
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Maximum Voltage (Minimum Distance)

Empirical Formula:
d=0.014- V32 [mm/kv?’/ 2]

Also depends somewhat on pressure (remember
Paschen curve)
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Pierce Angle for Electrons

Unfortunately, the same does not generally exist for ions...
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Recap from Morning Session:
Plasma Sheath

[l [l [l Jkn !
* Positive potential | |
| Ne=n ! Ny=Ne=;

* Ignore Pre-Sheath T nw_~ |

(except for Bohm  *"¢ | |
criterion). i i x
Sheath Presheath Plasma g

ka | |
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a ﬁ/l ! Vplasma ;

_ I arbitrary zero I

s | I

= | |

| I

| I

Viwall | |

~ H
) [
,,,,,,, j T
13

BERKELEY LAB Massachusetts Institute of Technology




Plasma Potential

From a simple sheath model, we can derive the plasma potential

Electron current density = ion current density to the wall (multiple ion
species):.
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lon Extraction — The Problem to Solve

Quasi-Neutral Plasma — Boundary — Non-neutral beam
plasma. Plus: Acceleration, Magnetic Fields, ...

Ultimately: Only possible numerically...raytracing codes,
relaxation process.
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Positive lon Extraction
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Typical Extraction System
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Negative lon Extraction

negative ions,

© A electrons
bulk bositive : o/ / extraction
0 plasma ions | @
|
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Problem with negative ions:
Co-extracted electrons

Permanent magnet dipole-antidipole
electron dump integrated in puller

Magnetic filter field for volume H- electrode

production formed by electric magnets

16 pole NdFeB-42 multicusp
and back plate cusp
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1.5 mm Ta filament with
70-80 A heating current and
up to 8 A arc current at 100-120 V

= v

2 mm diameter plasma
electrode aperture

SS430 plasma electrode insert
for separating the magnetic fields
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Problem with negative ions:
Co-extracted electrons

-10 kV -4 kV

!

Z (mm)

Cusp Dumping E ] RFQ entrance flange
S um
magnets P Lens 1 Lens 2

WindO{ = 1
1) N More on H- sources and

- Extractlon from them tomorrow

Filter
magnets

RF antenna

Outlet Extractor
electrode Ground electrode III
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RZ vs 3D

« Advantages of RZ:

- Speed

- Resolution

- Well-established codes (IGUN, PBGuns)

« Disadvantage:
- Throwing away part of the information
- Can include skew velocity (Necessary for B-fields!)
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How Is it done in Computer Programs?

Calculate Deposit p
Solve . . Solve 5
V2o=0 [ trajectories and ~ V2p=-p/eo Converged?
using E and B| | under-relax

No

T

« Relaxation Process

« Maxwellian Electrons included in non-linear Poisson
solver.
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Electric Potential and Field

Finite Difference Method

2¢ d26 d2

~ da? i dy? i dz2 €0

Poisson Equation:  v24

Discretized:

i1,k + Pit14k + Pij—1k + Gijr1k + Gije—1+ Pijrr1 —60ijk  Ppijk
h? €0

Boundary Conditions: Dirichlet ik = Pconst.

Neumann

—30ijk + 4015k — Piv2ik _ (dO
2h dax
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Software Overview
 |GUN: R. Becker, W.B.Herrmannsfeldt.
http.//www.egun-igun.com/

« KOBRA-INP: P. Spadtke, GSI
[INP, Junkerstr. 99, 65205 Wiesbaden, Germany]

« WARP: D. Grote, LBNL/LLNL
http.//warp.lbl.gov/

« IBSimu: T. Kalvas, University of Jyvaskyla.
http.//ibsimu.sourceforge.net/

« Other commercial codes that can do ion extraction or
particles dynamics. (SImION, PBGuns, VectorFields
SCALA,...)
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http://www.egun-igun.com/
http://warp.lbl.gov/
http://ibsimu.sourceforge.net/

One Simple IGUN Example...

...S0 you can do the HW later :)

...And a few caveats.
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ECRIS as Sources for Heavy lon Accelerators

20 ft
o.  Ks00
f Sopaet .
10N SOUrces (=== iy

coupling

VENUS (LBNL)
FRIB prototype sour

8

%ﬁ'@ @’*— PECRU
=

Extemcai
Becm line

RF Tank ¥ Magne Yok

I I
1 4m

88 - Inch Cydotren

National Science Foundation
Michigan State University

D. Winklehner, 2/19/2016, Slide 27



ECRIS as Sources for Heavy lon Accelerators
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gl VENUS - Charge State Distribution
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Facility for Rare Isotope Beams (FRIB)

Calls for a total of 480 epA of Uranium 28+/29+ (2 charge states)

ECR lon Sources
Room Temperature RFQ Accelerator

3=0.041 Quarter Wave Resonators
3=0.085 Quarter Wave Resonators

Target Beam Delivery System

=0.53 Half Wave Resonators

3=0.29 Half Wave Resonators

Cryogenic Distribution Line

: 28 GHz ECRIS
Charge Stripper (VENUS like)

Under design
SR Sl Viciiox st courtesy of
§)7 I Bvaisidefionig UNTVERSITY D.LQURSY:, 21102016, side 30
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Intermezzo: ECRIS — Principle

Gas, Microwaves
Solenoids
Ero _ Pnndifiqn: \ /

| Sextupole

Weer =

Me
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(VENUS):
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| — Cross-Sectional View
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ECRIS Simulations
— What Is so special?

» Solenoids — Emittance Growth
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» Sextupole — Triangular beam
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Space Charge ‘ % ‘o

I, In a grounded beam pipe ry:
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 Acts defocusing on the beam — need to counteract with beam optics
elements
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Space Charge Compensation
(Neutralization)

e Beam interacts with  OG¢ =  Ojonization

residual gas 9i = Ocharge—exchange + Tjonization
I-(1—
dreguy,
Beam Cross-Section 10 Cotlp E
121 :

\
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Y~ WARP - Introduction

Particle In Cell code (PIC) — Fortran code with Python interface

Fieldsolver and particle pusher separated, both have:
— 3D mode
— 2D modes: RZ, XY slice

Fields (lattice elements) can be loaded in the following ways:

— Hard-edged multipole elements

— Axially varying multipole elements

— Gridded elements (3D field maps)

— Electrostatic elements can be solved with SOR Poisson solver from
electrode geometry and voltages

Space charge calculated self-consistently on a mesh

WARP comes with a 2D and 3D plasma extraction model

'@ National Science Foundation
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« Semi-empirical by using
plasma markings inside the
source as template for particle
distribution.

* Generate 3D field map with
Lorentz-em or Opera3D

* Import into WARP

* Assume: no collisions during
final pass of particles.

» Track particles from injection
side to extraction aperture (XY
mode, small step size).

» Save particle distributions for
next step.
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Y 2D+ Extraction Model

« WARP has 2D and 3D plasma extraction
model - Relaxation Process:

— Start ions from plasma potential (V
— Track through applied fields (phi)
— Save particle charge density on mesh (rho)
— Solve Poisson equation (rho + phi)
— Add electrons with Boltzmann distribution
— Repeat with solution as applied fields

+~20V)

source
0.005

0.000 :

R (m)

« 3D simulations: Need high resolution,
take very long, instead:

» 2D+ method (D. Todd):

— Do relaxation process in RZ mode using same . R N I RETEEY
currents, species, etc. 0.00 0.02 0.04

— Save field solution and use as applied field in Z (m)
final 3D run with triangle distribution

-0.005

D.S. Todd et al., Simulation and beam line experiments for the superconducting electron
cyclotron resonance ion source VENUS, AIP, p. 02A316, 2008
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Extracted Arg*
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Quick Note about Homeworks

« Homeworks are due the next morning, solutions will
be available when you hand in the homework.

« Simulation Homeworks (except 6a today) will be
graded “on-the-fly” by us.

« At least one of us will be present in either the
classroom or the computer room from 4:00 PM to
6:00 PM and after dinner until ~10:00 PM.

« | would like to get feedback on the homeworks. When
you hand them in, please fill out the (anonymous) list
with difficulty and time spent.

 Difficulty in mJackson :) = Analysis on Friday.
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